A Deep Convolutional Neural Model for Character-Based Chinese Word Segmentation

نویسندگان

  • Zhipeng Xie
  • Junfeng Hu
چکیده

This paper proposes a deep convolutional neural model for character-based Chinese word segmentation. It first constructs position embeddings to encode unigram and bigram features that are directly related to single positions in input sentence, and then adaptively builds up hierarchical position representations with a deep convolutional net. In addition, a multi-task learning strategy is used to further enhance this deep neural model by treating multiple supervised CWS datasets as different tasks. Experimental results have shown that our neural model outperforms the existing neural ones, and the model equipped with multi-task learning has successfully achieved state-of-the-art F-score performance for standard benchmarks: 0.964 on PKU dataset and 0.978 on MSR dataset.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Closed-Set Chinese Word Segmentation Based on Convolutional Neural Network Model

This paper proposes a neural model for closed-set Chinese word segmentation. The model follows the character-based approach which assigns a class label to each character, indicating its relative position within the word it belongs to. To do so, it first constructs shallow representations of characters by fusing unigram and bigram information in limited context window via an element-wise maximum...

متن کامل

A Gap-Based Framework for Chinese Word Segmentation via Very Deep Convolutional Networks

Most previous approaches to Chinese word segmentation can be roughly classified into character-based and word-based methods. The former regards this task as a sequence-labeling problem, while the latter directly segments character sequence into words. However, if we consider segmenting a given sentence, the most intuitive idea is to predict whether to segment for each gap between two consecutiv...

متن کامل

A multi-scale convolutional neural network for automatic cloud and cloud shadow detection from Gaofen-1 images

The reconstruction of the information contaminated by cloud and cloud shadow is an important step in pre-processing of high-resolution satellite images. The cloud and cloud shadow automatic segmentation could be the first step in the process of reconstructing the information contaminated by cloud and cloud shadow. This stage is a remarkable challenge due to the relatively inefficient performanc...

متن کامل

Convolutional Neural Network with Word Embeddings for Chinese Word Segmentation

Character-based sequence labeling framework is flexible and efficient for Chinese word segmentation (CWS). Recently, many character-based neural models have been applied to CWS. While they obtain good performance, they have two obvious weaknesses. The first is that they heavily rely on manually designed bigram feature, i.e. they are not good at capturing n-gram features automatically. The secon...

متن کامل

Word and Document Embeddings based on Neural Network Approaches

Data representation is a fundamental task in machine learning. The representation of data affects the performance of the whole machine learning system. In a long history, the representation of data is done by feature engineering, and researchers aim at designing better features for specific tasks. Recently, the rapid development of deep learning and representation learning has brought new inspi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017